Update on Major IPV Initiatives

Polio Immunization: Moving Forward, Bethesda, 19-20 September 2007

Overview

- Convene Polio Research Subcommmittee
- Major initiatives:
 - Assessment of emerging polio risks
 - Research to accelerate eradication
 - Long-term containment of polioviruses
 - Long-term surveillance and response
 - Research on safer and more affordable IPV
 - S-IPV development
 - IPV demonstration project
 - Schedule- and dose reduction studies
 - Options for OPV cessation
- Program of work for Inactivated Poliovirus Vaccine (IPV)
- Summary/conclusions

IPV Program of Work

Better define epidemiology

- Policy changes: New Zealand, Australia
- Borders between OPV and IPV: US-Mexican border study
- Demonstration projects: Switch from OPV to IPV (Argentina, Mexico, Indonesia)
- Develop IPV policy (April 2006: IPV following OPV cessation)
 - IPV requirements for countries electing to retain poliovirus after OPV cessation
 - Concept of secondary safe guards (incl. vaccination requirements introduced into GAP-III)
 - Immunogenicity of IPV (especially contribution of 4th dose)

New vaccine/seed strain development

- Sabin-IPV
- Schedule- and dose reduction studies
 - Fractional IPV dose studies under way in Cuba and Oman

Sabin-IPV Development

Sabin-IPV Rationale

- -Facilitate containment
- –Serve as "warm-base" for restartOPV production
- Minimize the proliferation of wild poliovirus amplification sites
- Facilitate the replacement of wild poliovirus in vaccine production (longterm objective)
- Roadmap for development of new seed strains for IPV production

IPV Demonstration Project

Project Outline

- 5-year demonstration project of IPV introduction into a tropical area
- Collaboration between MOH, Provincial Health, vaccine manufacturer & WHO
- Yogjakarta province (population ~5 million; birth cohort ~55,000)

Objectives

GENERAL OBJECTIVES

- to assess the operational feasibility of using an IPVonly schedule for the prevention of poliomyelitis; and
- to evaluate the scientific and programmatic issues affecting the use of an IPV-only schedule in a tropical developing setting.

SPECIFIC OBJECTIVES

- will IPV-induced immunity prevent OPV-derived virus from establishing circulation; and
- how many doses of IPV provided at which age (and interval) will be necessary to induce immunity to polioviruses in a high proportion (>90%) of vaccinees.

Feasibility Completed

- Vaccination coverage (done):
- Environmental surveillance (established 1 July 04):
- Ethical review (done):
- Majelis Ulama Indonesia (MUI) (decision made with Sharia Division, MOH):

Environmental Surveillance

- Weekly sample collection by an in early y 2004 in Yogyakarta
- Samples processed yielded po
 (Sabin polioviruses)
 Project started &
- Sample 7 results (part) below Proceeding well!

		Date of	ate of samp	ole							<u></u>		Date of
Collection site	Sample	collected	send	received	S-							Non Polio	send
	code	sample	to lab.	at lab.	sonaltion	n¢					<u> </u>	EnteroVirus	the result
									\triangle				
Inlet sewage	IPV 007/08/04	23/8/2004	23/8/2004	24/8/2004	Good	007			1				16/9/2004
IPAL Sewon Bantul									2	. [
						\sim			3	\ [
									4	n\ [
									5	po.	Polio 2		
		_				·	RI	Д	1	pos.		Not done	

- First shipment of concentrates and tissue cultures to GSL/Finland (done, end of September)
- Protocol for NPEV (drafted already)

Immunization Strengthening

- Immunity assessment (done)
- Serological survey (before (done) / and year after IPV introduction; contribution of 4th dose)
- Cold chain capacity assessment (done):
 - Cold chain expert to review & prepare report
- Communication plan (done):
 - Including advocacy, social mobilization, sensitization, and training (incl. medical associations, universities, NGOs, ..)

Vaccination Policy

• Vaccines:

- Vaccine (IPV)
- Note: DTP-HB introduced early 2005

Age	Now	Future
0-1 m	BCG, OPV, HB	BCG, HB
2 m	OPV, DTP, HB	IPV, DTP- HB
3 m	OPV, DTP, HB	IPV, DTP- HB
4 m	OPV, DTP, HB	IPV, DTP- HB
9 m	measles	IPV, measles

Status & Next Steps

- A two-year delay (calamities: tsunami, earth quake; and polio outbreak following importation)
- IPV introduction phase completed
 - Vaccine procurement (donation)
- Plans of action finalized (including communication & training)
- Memorandum of Understanding (MOU) signed
 - Government, Province & WHO
- Switch from OPV to IPV has occurred, 3 September 2007

Schedule- and Dose Reduction Studies for IPV

Objective and Rationale for Schedule- and Dose Reduction

Objective of Program-of-Work:

 Provide the option for IPV use to decision-makers in lower-middle and low-income countries

Rationale:

- Routine Use:
 - Make IPV potentially affordable to lower-middle and lowincome countries (combination IPV vaccines expensive)
- Campaign Use:
 - Stretch limited supplies of IPV
 - Limit expenses
 - Facilitate administration of IPV by volunteers in large-scale campaigns

Lines of Interest/Investigation

Reduced schedule:

 2-dose schedule with IPV in Senegal administered 6 months apart provided a efficacy of 90% → literature review

Fractional doses:

 1/5 dose of IPV (0.1 ml) administered intradermally provides similar seroconversion than full doses → clinical trials

Robertson S, et al. Clinical efficacy of a new enhanced-potency inactivated poliovirus Vaccine. Lancet 1988;i:897-899.

Samuel BU,et al. Immune response to intradermally injected inactivated poliovirus vaccine. Lancet 1991;338:343-4. Nirmal S et al. Immune response of infants to fractional doses of intradermally administered inactivated poliovirus vaccine. Vaccine 1998;16:928-31.

Table 2. Immunogenicity of IPV* in single or combination vaccines in developing countries or countries in transition (from developing to developed)

Reference	Country	Vaccine	Schedule	Cut-off (≥) ^b	No. of doses	seropre	Seroconversion or seroprevalence ≥1 month after last dose (%)	
						Type 1	Type 2	Туре 3
Schatzmayr et al. (1986)	Brazil	IPV	2 m, 4 m ^c 2 m, 4 m, 6 m	1:5 1:5	2 3	99 100	100 100	100 100
Simoes et al. (1985)	India	DTP ^d -IPV	6–7 w*, 4 w int ⁴ 6–7 w, 8 w int	1:8 1:8	2 2	95 95	75 83	97 96
			8–12 w, 4 w int 8–12 w, 8 w int 13–45 w, 4 w int	1:8 1:8 1:8	2 2 2	94 100 100	88 95 90	100 100 90
			13–45 w, 8 w int	1:8	2	100	100	100
Schwartz et al. (1989)	Israel	IPV	0, 6 m	1:8	2	80	98	71
Kok et al. (1992)	Kenya	DTP-IPV	2–3 m, 4–5 m 2–3 m, 4–5 m, 6–7 m	1:8 1:8	2 3	94 100	98 100	87 98
Nirmal et al. (1998)	India	IPV intradermal	6–8 w, 8 w int 6–8 w, 4 w int	1:4 1:4	2 2	90 90	70 80	97 98
WHO et al. (1996)	Oman ^g	DTP-IPV	6 w, 10 w 6 w, 10 w, 14 w	1:8 1:8	2 3	71 90	83 96	81 95
	Thailand	DTP-IPV	6 w, 10 w 6 w, 10 w, 14 w	1:8 1:8	2 3	40 67	48 65	79 94
	Gambiah	DTP-IPV	6 w, 10 w, 14 w	1:8	3	81	82	9.8
Gylca et al. (2001)	Moldova	DtaP\HBV\- IPV/sep ^k Hib ^l	6 w, 10 w, 14 w	1:8	3	99	98	99
Bordic et al. (1998)	Croatia	IPV	3 m, 4.5 m, 6 m	NA=	3	97	100	97
Lagos et al. (1998)	Chile	DTaP/sep IPV DTaP-IPV DTaP-IPV/sep Hib DTaP-IPV/reconstituted with Hib	2 m, 4 m, 6 m 2 m, 4 m, 6 m 2 m, 4 m, 6 m 2 m, 4 m, 6 m	1:5 1:5 1:5 1:5	3 3 3	100 100 100 100	100 100 100 100	100 100 100 100

Past Experience with ID IPV

- Nirmal et al. 1998 Vaccine 16, 928-931
 - 78 infants (6-8 weeks), India.
 - IPV (ImoVax) : 0.1 ml intradermal (normal dose 0.5 ml IM)
 - 2 doses at 8 week interval: 85.5% seroconversion
 - 3 doses at 4 week interval: 89.0 % seroconversion
 - Concomitant with DTP
 - Comparison to previous study:
 - 2 doses 0.5 ml IM: 90% seroconversion
- ID delivery of IPV may be a less expensive alternative for use in developing countries.

Seroconversion After 3 doses of IPV, Puerto Rico and Cuba

Country	6-10-14	2-4 mos	2-4-6	Placebo
	weeks		mos	
Puerto	86% P1		97% P1	
Rico ^{&}	86% P2		100% P2	
	97% P3		99% P3	
Cuba*	94% P1	90% P1		0% P1
	83 % P2	89% P2		0% P2
	100% P3	90% P3		0% P3

[&]Dayan GH, et al. Serologic response to IPV: A randomized clinical trial comparing 2 vaccination schedules In Puerto Rico. J infect Diseases 2007; 195:12-20

N Engl J Med 2007;356:1536-44.

^{*}The Cuba IPV Study Collaborative Group. Randomized, placebo-controlled trial of IPV in Cuba.

Studies on ID Delivery of IPV

Cuba

 In progress; randomized (but not blinded) trial; fractional dose ID IPV compared with full dose IM IPV; schedule 6, 10, 14 weeks; cord blood, and blood at 6, 10, 14, and 18 weeks (results in end-2007)

Oman

 Start (February 2007); schedule is 40 days, 3, and 5 months; followed by challenge dose of mOPV1 (results in mid-2008)

Summary/Conclusions

- An comprehensive program of work for IPV is being implemented
- The most important elements of which are:
 - 1) proof-of-principle of S-IPV;
 - 2) the Yogjakarta 5-year IPV project; and
 - 3) the evaluations of fractional IPV dose administered by needle-free devices intradermally
- WHO has published policy paper on IPV use after OPV cessation (WER -- April 2006)
- Convene Research Subcommittee nominations are being solicited